

# The right choice matters! SMT solving substantially improves model-based debugging of spreadsheets.

Simon Außerlechner, Sandra Fruhmann, Wolfgang Wieser, <u>Birgit Hofer</u>, Raphael Spörk, Clemens Mühlbacher, and Franz Wotawa

2013 13th Int. Conference on Quality Software (QSIC), July 2013, Nanjing, China

#### Fault Localization in Spreadsheets

- What is Spreadsheet fault localization?
- Why important?
  - Spreadsheet users outnumber programmers
  - Basis for decisions, but error prone
  - Hard to debug spreadsheets
- Attempts to use model-based debugging Limitations
  - $\rightarrow$  No support for real numbers
  - → Solving time

2

#### Outline

3





## Existing work

4

- Abreu et al.: "Constraint-based Debugging of Spreadsheets" [ARW12]
   Minion constraint solver
- Jannach and Engler: "Toward model-based debugging of spreadsheet programs" [JE10]
   Choco constraint solver

Limitations No Support for Real Numbers Solving Time

- [ARW12] Rui Abreu, André Riboira, and Franz Wotawa. "Constraint-based Debugging of Spreadsheets." 15<sup>th</sup> Iberoamerican Conference on Software Engineering, 2012, pp. 1–14.
- [JE10] Dietmar Jannach and Ulrich Engler. "Toward model-based debugging of spreadsheet programs." 9<sup>th</sup> Joint Conference on Knowledge-Based Software Engineering 2010, pp. 252–264.

## **Running Example**

#### Faulty Spreadsheet

|   | А     | В      | С      | D     | E    | F          |
|---|-------|--------|--------|-------|------|------------|
| 1 |       | week 1 | week 2 | Total | \$/h | Gross Pay  |
| 2 | Green | 23     | 31     | 23    | 15   | \$345,00   |
| 3 | Jones | 35     | 34     | 69    | 17   | \$1.173,00 |
| 4 | Total | 58     | 65     | 92    |      |            |

#### Formula View

|   | А     | В           | С           | D           | E    | F         |
|---|-------|-------------|-------------|-------------|------|-----------|
| 1 |       | week 1      | week 2      | Total       | \$/h | Gross Pay |
| 2 | Green | 23          | 31          | =SUM(B2)    | 15   | =D2*E2    |
| 3 | Jones | 35          | 34          | =SUM(B3:C3) | 17   | =D3*E3    |
| 4 | Total | =SUM(B2:B3) | =SUM(C2:C3) | =SUM(D2:D3) |      |           |

#### Source: EUSES Spreadsheet Corpus

#### **Test Cases for Spreadsheets**

- Input cells: cells that do not reference other cells
  - I = {B2=23, C2=31, E2=15, B3=35, C3=34, E3=17}
- Output cells: any formula cell, determined by user
  O = {B4=58, C4=65, D4=123, F2=810, F3=1173}

|   | Α     | В      | С      | D     | E    | F          |
|---|-------|--------|--------|-------|------|------------|
| 1 |       | week 1 | week 2 | Total | \$/h | Gross Pay  |
| 2 | Green | 23     | 31     | 23    | 15   | \$345,00   |
| 3 | Jones | 35     | 34     | 69    | 17   | \$1.173,00 |
| 4 | Total | 58     | 65     | 92    | )    |            |
|   |       |        |        |       |      |            |

### Constraint-based Debugging (ConBug)



#### [ARW12] Rui Abreu, André Riboira, and Franz Wotawa. "Constraint-based Debugging of Spreadsheets." 15<sup>th</sup> Iberoamerican Conference on Software Engineering, 2012, pp. 1–14.



### Satisfiability modulo theories (SMT) solver

- Based on Boolean satisfiability
- Enhanced by different theories (e.g. Integer, Real)
- Solves decision problem
  - Determine diagnoses via MCSes and MCSes-U algorithms [LS08, LS09]
- Z3 solver

8

- Speedup in computation time
- Handling of real numbers
- [LS08] M. H. Liffiton and K. A. Sakallah. "Algorithms for computing minimal unsatisfiable subsets of constraints," J. Autom. Reason., vol. 40, no. 1, pp. 1–33, Jan. 2008.
- [LS09] M. H. Liffiton and K. A. Sakallah."Generalizing core-guided max-sat," 12th Int. Conference on Theory and Applications of Satisfiability Testing (SAT '09). Springer-Verlag, 2009, pp. 481–494.



#### Spreadsheet Corpora (1)

- Limitations of EUSES spreadsheet corpus [FR05]
  - Many small spreadsheets
  - Missing input values
  - Obsolete file formats
  - No faulty versions

[FR05] Marc II Fisher and Gregg Rothermel. "The EUSES Spreadsheet Corpus: A Shared Resource for Supporting Experimentation with Spreadsheet Dependability Mechanisms." 1st Workshop on End-User Software Engineering. 2005, pp. 47–51.



### Spreadsheet Corpora (2)

|            | Mod. EUSES corpus                         | Integer corpus                                  |
|------------|-------------------------------------------|-------------------------------------------------|
| Source     | Filtering from EUSES                      | Artificially created +<br>existing spreadsheets |
| Domain     | Reals                                     | Integer                                         |
| Mutants    | 622 mutants<br>created with spreadsheet r | 220 mutants<br>mutation operators [AE09]        |
| Complexity | 6 to 4,000 formulas<br>AVG: 225 formulas  | 7 to 233 formulas<br>AVG: 39 formulas           |

Original spreadsheets + mutants publicly available

10



#### **Empirical Evaluation**

- Runtime comparison
  - Minion vs. Choco vs. Z3 (MCSes and MCSes-U) Integer corpus
  - Integers vs. Real numbers
    Integer corpus + Real number version
- Reduction quality

11

Modified EUSES corpus

#### Runtime comparison [in ms]: Choco vs. Minion



#### Runtime comparison [in ms]: Z3 vs. Choco



#### **Detailed runtime comparison**

- Choco slightly faster than Minion
- Z3 faster than Minion and Choco
  - Approx. 6 times faster for Integer corpus
- Integer vs. Real domain
  - Integer spreadsheets approx.2.6 times faster than Reals



#### **Reduction quality**

- Reduction =  $1 \frac{\text{Cells in diagnoses}}{\text{Formula cells}} \times 100\%$
- Evaluation basis
  - Subset of mod. EUSES corpus
  - 183 of 622 spreadsheets
- Results

15

- 12 spreadsheets: timeout 5 minutes
- ~ 80 % reduction
- ~ 500 ms avg. solving time (Z3)



#### Future Work and Open Challenges

- Scalability problem (Hypertree complexity)
- User interface and user acceptance study
- Explanations for the user (traceability)
- Dealing with vague user input

16



### Using Z3 as solver ...

... makes it possible to use model-based debugging for spreadsheets

17

- In practice (Real numbers) and
- For interactive debugging (Solving time)

