

Why does my spreadsheet compute wrong values?

Birgit Hofer, and Franz Wotawa Graz University of Technology, Austria

25th IEEE Int. Symposium on Software Reliability Engineering (ISSRE), Nov. 2014, Naples, Italy

Why spreadsheets?

- Used in nearly every company
- Basis for decisions
- Error prone
 - 3-5 % chance to make a fault in a formula
 - 88 % of spreadsheets contain faults
- Hard to debug
 - Size of spreadsheets
 - Structure hidden

Outline

Spreadsheet Fault Localization

- Spectrum-based Fault Localization
- Model-based Software Debugging

o Abreu et al. [AHP14]

o Jannach and Schmitz [JS14]

Localization by repair

4

- [AHP14] R. Abreu, B. Hofer, A. Perez, and F. Wotawa: "Using constraints to diagnose faulty spreadsheets." *Software Quality Journal, pp. 1–26,* 2014.
- [JS14] Dietmar Jannach and Thomas Schmitz, "Model-based diagnosis of spreadsheet programs A constraint-based debugging approach," *Automated Software Engineering, Springer, pp. 1-40, 2014.*

This is a simplified version of the homework/Budgetone spreadsheet from the EUSES Spreadsheet Corpus

Running Example – Formula View

	А	В	С	D
1	ltem	1st Qtr	2nd Qtr	Total
2	Units Sold	1000	1500	=SUM(B2:C2)
3	ASP/Unit	20	21	=D4/D2
4	Sales Revenue	=B3*B2	=C3*C2	=SUM(B4:C4)
5	Expenses	5000	6000	=SUM(B5:B5)
6	Operating Income	=B4-B5	=C4-C5	=D4-D5
7	Op Income in %	=B6/B4	=C6/C4	=D6/D4

This is a simplified version of the homework/Budgetone spreadsheet from the EUSES Spreadsheet Corpus

Birgit Hofer, and Franz Wotawa: "Improving Dependency-based Models for Fault Localization in Spreadsheet Debugging" 25th IEEE International Symposium on Software Reliability Engineering (ISSRE), November 2014, Naples, Italy

6

Running Example – Dependency Graph

This is a simplified version of the homework/Budgetone spreadsheet from the EUSES Spreadsheet Corpus

Model-Based (Software) Debugging

[AHP14] Abreu, Hofer, Perez, Wotawa: "Using constraints to diagnose faulty spreadsheets." Software Quality Journal, pp. 1–26, 2014.

Birgit Hofer, and Franz Wotawa: "Improving Dependency-based Models for Fault Localization in Spreadsheet Debugging" 25th IEEE International Symposium on Software Reliability Engineering (ISSRE), November 2014, Naples, Italy

8

Models for a Spreadsheet's Behavior

Value-based

- D2 = B2 + C2
- D3 = D4 / D2
- B4 = B3 * B2

Dependency-based

- $ok(B2) \land ok(C2) \rightarrow ok(D2)$
- $ok(D4) \land ok(D2) \rightarrow ok(D3)$
- $ok(B3) \land ok(B2) \rightarrow ok(B4)$

	А	В	С	D
1	ltem	1st Qtr	2nd Qtr	Total
2	Units Sold	1000	1500	=SUM(B2:C2)
3	ASP/Unit	20	21	=D4/D2
4	Sales Revenue	=B3*B2	=C3*C2	=SUM(B4:C4)
5	Expenses	5000	6000	=SUM(B5:B5)
6	Operating Income	=B4-B5	=C4-C5	=D4-D5
7	Op Income in %	=B6/B4	=C6/C4	=D6/D4

Models for a Spreadsheet's Behavior

Value-based

- D2 == B2 + C2
- D3 == D4 / D2
- B4 == B3 * B2
- + exact, few diagnoses
- computation time
 - Reals: lacking support
- [AFW13] S. Ausserlechner et al.: "The Right Choice Matters! SMT Solving Substantially Improves Model-Based Debugging of Spreadsheets." QSIC 2013: 139-148

Dependency-based

- $ok(B2) \land ok(C2) \rightarrow ok(D2)$
- $ok(D4) \land ok(D2) \rightarrow ok(D3)$
- $ok(B3) \land ok(B2) \rightarrow ok(B4)$

+ fast

many diagnoses

Focus of this work

Improving the Dependency-based Model

• Use \leftrightarrow instead of \rightarrow $\circ \circ k(B2) \land \circ k(C2) \leftrightarrow \circ k(D2)$ $\circ \circ k(D4) \land \circ k(D2) \leftrightarrow \circ k(D3)$ $\circ \circ k(B3) \land \circ k(B2) \leftrightarrow \circ k(B4)$

	А	В	С	D
1	ltem	1st Qtr	2nd Qtr	Total
2	Units Sold	1000	1500	=SUM(B2:C2)
3	ASP/Unit	20	21	=D4/D2
4	Sales Revenue	=B3*B2	=C3*C2	=SUM(B4:C4)
5	Expenses	5000	6000	=SUM(B5:B5)
6	Operating Income	=B4-B5	=C4-C5	=D4-D5
7	Op Income in %	=B6/B4	=C6/C4	=D6/D4

- Coincidental correctness
 - Conditional like IF-function
 - o Abstraction function like MIN, MAX, COUNT
 - o Boolean

11

- o Multiplication by zero
- Power with 0 or 1 as base number or 0 as exponent

Empirical Evaluation

- Java implementation using
 - Apache POI
 - Minion Constraint solver
- Spreadsheets from Integer corpus
 - Single fault only

94 spreadsheets

63 spreadsheets

31 spreadsheets

→ Timeout (20 minutes) for 31 spreadsheets for Value-based model

Empirical Evaluation

Model	63 spreadsheets	31 spreadsheets			
Number of single fault diagnoses					
Value-based	4.0	-			
Dependency-based	13.2	45.0			
Improved Depbased	11.0 (-16.6%)	38.6 (-14.2%)			
Runtime in ms					
Value-based	56,818.8	> 20 minutes			
Dependency-based	32.0	187.4			
Improved Depbased	31.6	164.8			

Implications

- Still more diagnoses than value-based model
- + Real time applicable
- + Arbitrary solver (only Boolean needed)
- + Debugging of spreadsheets containing Real numbers
- + Correct/wrong instead of concrete values for cells
- + Approach can be used in other domains as well

Summary

Birgit Hofer, and Franz Wotawa: "Improving Dependency-based Models for Fault Localization in Spreadsheet Debugging" 25th IEEE International Symposium on Software Reliability Engineering (ISSRE), November 2014, Naples, Italy

15